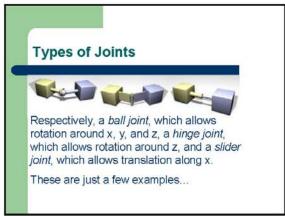
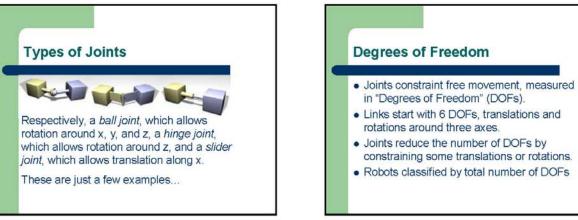
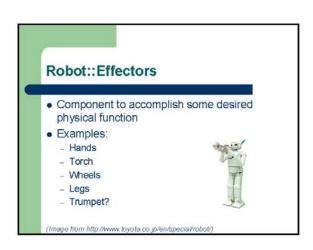
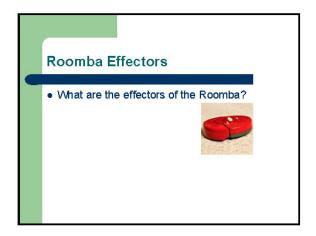

Who's to say? Many devices with varying degrees of autonomy are called robots. Many different definitions for robots exist. Some consider machines wholly controlled by an operator to be robots. Others require a machine be easily reprogrammable.

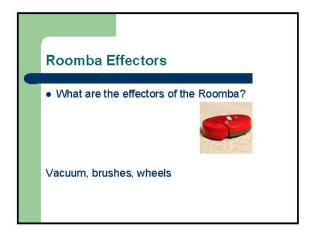


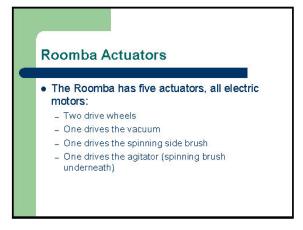




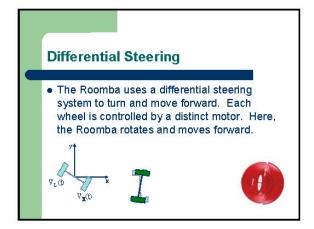


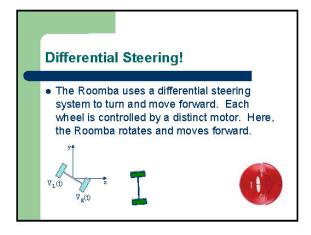


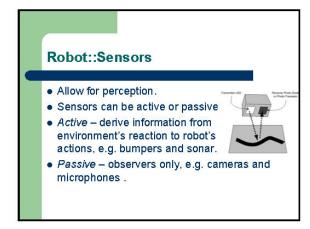


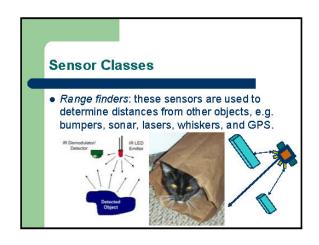


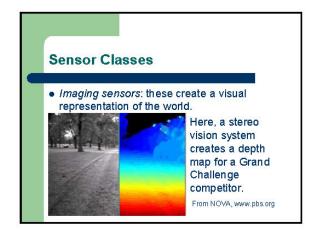


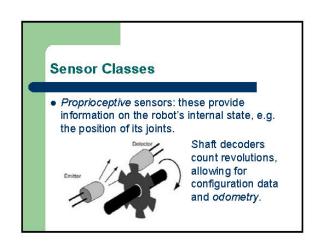


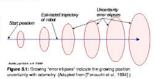

Actuators are the "muscles" of the robot. These can be electric motors, hydraulic systems, pneumatic systems, or any other system that can apply forces to the system.










Odometry

- Odometry is the estimation of distance and direction from a previously visited location using the number of revolutions made by the wheels of a vehicle.
- Odometry can be considered a form of "Dead Reckoning*," a more general position estimation based on time, speed, and heading from a known position.

*The Oxford English Dictionary does not recognize "deductive reasoning" as the basis of "dead reckoning"

Odometry

- Odometry is good for short term, relative position estimation.
- However, uncertainty grows, shown by error ellipses, without bound.
- This is due to systematic and non-systematic errors.

Odometry, Non-systematic Errors

- These errors can rarely be measured and incorporated into the model.
- Error causes include uneven friction, wheel slippage, bumps, and uneven floors.

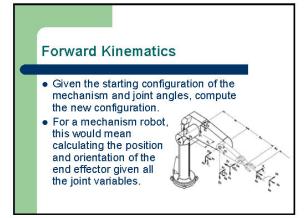
Odometry, Systematic Errors

- Errors arising from general differences in model and robot behavior that can be measured and accounted for in the model, a process known as calibration.
- Two primary sources:
 - Unequal wheel diameters lead to curved trajectory
 - Uncertainty about wheel base lead to errors in turn angle

Odometry, Position Updates

- With calibration, model behavior becomes more similar to observed behavior. However, estimation uncertainty still grows without bound.

 With type Landmarks.


 Page 1 Type

 Page 1
- Position updates reduce uncertainty

Kinematics

- The calculation of position via odometry is an example of kinematics.
- Kinematics is the study of motion without regard for the forces that cause it.
- It refers to all time-based and geometrical properties of motion.
- It ignores concepts such as torque, force, mass, energy, and inertia.

Kinematics of Differential Steering

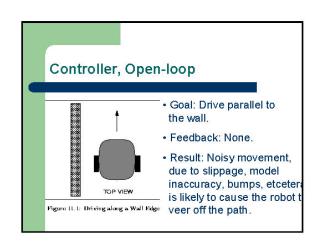
- The above model has an asymptote when $v_R v_Z \approx 0$
- When this occurs, special handling is required.
- Or a simpler model can be used:

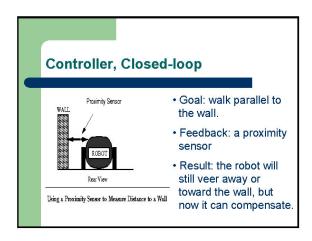
 $\bar{s} = (s_R + s_I)/2$ Here, SR and SL are measured $\mathscr{S} = (s_R - s_I)/b + \mathscr{B}$ right and left velocities. This $x = \bar{s} \cos(\mathscr{B}) + x_0$ approximates movement as a

 $y = \bar{s} \sin(\delta) + y_0$ "point-and-shoot."

Kinematics of Differential Steering

- Simpler approximations are often used when onboard computing power is lacking (or programmers are lazy!).
- However, the error grows quicker.
- · A slightly better approximation:


 $\bar{s} = (s_R + s_I)/2$


 $\theta = (s_R - s_L)/2b + \theta_0$

 $x = \bar{s} \cos(\partial + x_0$

 $y = \bar{s} \sin(\partial) + y_0$

Controllers direct a robot how to move. There are two controller paradigms Open-loop controllers execute robot movement without feedback. Closed-loop controllers execute robot movement and judge progress with sensors. They can thus compensate for errors.

Trajectory Error Compensation

- If a robot is attempting to follow a path, it will typically veer off eventually. Controllers design to correct this error typically come in three types:
 - P controllers provide force in negative proportion to measured error.
 - PD controllers are P controllers that also add force proportional to the first derivative of measured error.
 - PID controllers are PD controllers that also add force proportional to the integral of measured error.

Roomba Control

- The movement of the Roomba can be hardcoded ahead of time as an example of openloop control.
- A path can be converted to Roomba wheel movement commands via inverse kinematics.

Inverse Kinematics

- Inverse Kinematics is the reverse of Forward Kinematics. (!)
- It is the calculation of joint values given the positions, orientations, and geometries of mechanism's parts.
- It is useful for planning how to move a robot in a certain way.

Vehicles using differential steering will go in a straight line if both wheels receive the same power. If both wheels turn at constant, but different, speeds, the vehicle follows a circular path Distances si = r to traveled: si = (r + b) to the steering will go in a straight line if both wheels receive the same power.

 $SM = (r + b/2) \vartheta$

Kinematics-1 of Differential Steering

 This calculation ignores acceleration, but it can be used to calculate how to move a device using a differential steering system, such as a Roomba, along a path that consists of lines and arcs.

Potential Field Control

- Potential field control is similar to the hillclimbing algorithm.
- Given a goal position in a space, create an impulse to go from any position in the space toward the goal position.
- Add Repulsive forces wherever there are obstacles to be avoided.
- . This does not require path planning.

Potential Field Soccer 1 moves toward the blue goal. 1 avoids 7, 6, and 8. Teammates generate attractive fields.

Reactive Control

- Given some sensor reading, take some action
- This is the robotics version of a reflex agent design.
- It requires no model of the robot or the environment.
- Maze exiting:
 - Keep Moving forward.
 - If bump, turn right.

Robot::Software Architecture

- Previous control methods include deliberative methods and reactive methods.
 - Deliberative methods are model-driven and involve planning before acting.
 - Reactive methods is sensor-driven and behavior must emerge from interaction.
- Hybrid architectures are software architectures combining deliberative and reactive controllers.
 - An example is path-planning and PD control.

Three-Layer Architecture

- The most popular hybrid software architecture is the three-layer architecture:
 - Reactive layer low-level control, tight sensor-action loop, decisions cycles (DCs) order of milliseconds.
 - Executive layer directives from deliberative layer sequenced for reactive layer, representing sensor information, localization, mapping, DCs order of seconds.
 - Deliberative layer generates global solutions to complex tasks, path planning, model-based planning, analyze sensor data represented by executive layer, DCs order of minutes.

Robot Ethics 0th) A robot may not harm humanity, or, by Asimov's inaction, allow humanity to come to Three^H^H^H^H^H Four Laws: 1st) A robot may not injure a human being or, through inaction, allow a human being to come to harm. 2nd) A robot must obey orders given it by human beings except where such orders would conflict with the First Law. rd) A robot must protect its own existence as long as such protection does not conflict with the First or Second Law. age from http://www.bmc.riken.ip/%7ERI-MAN/index_ip.htm/l